Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Eur J Protistol ; 80: 125821, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34144311

RESUMO

Trypanosoma cruzi is a protozoan of great medical interest since it is the causative agent of Chagas disease, an endemic condition in Latin America. This parasite undergoes epigenetic events, such as phosphorylation, methylation and acetylation, which play a role in several cellular processes including replication, transcription and gene expression. Histone deacetylases (HDAC) are involved in chromatin compaction and post-translational modifications of cytoplasmic proteins, such as tubulin. Tubastatin A (TST) is a specific HDAC6 inhibitor that affects cell growth and promotes structural modifications in cancer cells and parasites. In the present study, we demonstrated that T. cruzi epimastigote cell proliferation and viability are reduced after 72 h of TST treatment. The results obtained through different microscopy methodologies suggest that this inhibitor impairs the polymerization dynamics of cytoskeleton microtubules, generating protozoa displaying atypical morphology and cellular patterns that include polynucleated parasites. Furthermore, the microtubules of treated protozoa were more intensely acetylated, especially at the anterior portion of the cell body. A cell cycle analysis demonstrated an increase in the number of trypanosomatids in the G2/M phase. Together, our results suggest that TST should be explored as a tool to study trypanosomatid cell biology, including microtubule cytoskeleton dynamics, and as an antiparasitic drug.


Assuntos
Ciclo Celular/fisiologia , Divisão Celular/fisiologia , Citoesqueleto/metabolismo , Ácidos Hidroxâmicos/farmacologia , Indóis/farmacologia , Trypanosoma cruzi/citologia , Trypanosoma cruzi/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos
2.
Sci Rep ; 11(1): 9210, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33911164

RESUMO

Angomonas deanei coevolves in a mutualistic relationship with a symbiotic bacterium that divides in synchronicity with other host cell structures. Trypanosomatid mitochondrial DNA is contained in the kinetoplast and is composed of thousands of interlocked DNA circles (kDNA). The arrangement of kDNA is related to the presence of histone-like proteins, known as KAPs (kinetoplast-associated proteins), that neutralize the negatively charged kDNA, thereby affecting the activity of mitochondrial enzymes involved in replication, transcription and repair. In this study, CRISPR-Cas9 was used to delete both alleles of the A. deanei KAP4 gene. Gene-deficient mutants exhibited high compaction of the kDNA network and displayed atypical phenotypes, such as the appearance of a filamentous symbionts, cells containing two nuclei and one kinetoplast, and division blocks. Treatment with cisplatin and UV showed that Δkap4 null mutants were not more sensitive to DNA damage and repair than wild-type cells. Notably, lesions caused by these genotoxic agents in the mitochondrial DNA could be repaired, suggesting that the kDNA in the kinetoplast of trypanosomatids has unique repair mechanisms. Taken together, our data indicate that although KAP4 is not an essential protein, it plays important roles in kDNA arrangement and replication, as well as in the maintenance of symbiosis.


Assuntos
Bactérias/metabolismo , Replicação do DNA , DNA de Cinetoplasto/genética , DNA de Protozoário/genética , Mitocôndrias/genética , Proteínas de Protozoários/genética , Trypanosomatina/genética , Divisão Celular , Núcleo Celular , DNA de Cinetoplasto/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , DNA de Protozoário/metabolismo , Mitocôndrias/metabolismo , Proteínas de Protozoários/metabolismo , Simbiose , Trypanosomatina/metabolismo , Trypanosomatina/microbiologia
3.
Front Cell Infect Microbiol ; 11: 642271, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33777851

RESUMO

Trypanosomatids have a cytoskeleton arrangement that is simpler than what is found in most eukaryotic cells. However, it is precisely organized and constituted by stable microtubules. Such microtubules compose the mitotic spindle during mitosis, the basal body, the flagellar axoneme and the subpellicular microtubules, which are connected to each other and also to the plasma membrane forming a helical arrangement along the central axis of the parasite cell body. Subpellicular, mitotic and axonemal microtubules are extensively acetylated in Trypanosoma cruzi. Acetylation on lysine (K) 40 of α-tubulin is conserved from lower eukaryotes to mammals and is associated with microtubule stability. It is also known that K40 acetylation occurs significantly on flagella, centrioles, cilia, basal body and the mitotic spindle in eukaryotes. Several tubulin posttranslational modifications, including acetylation of K40, have been cataloged in trypanosomatids, but the functional importance of these modifications for microtubule dynamics and parasite biology remains largely undefined. The primary tubulin acetyltransferase was recently identified in several eukaryotes as Mec-17/ATAT, a Gcn5-related N-acetyltransferase. Here, we report that T. cruzi ATAT acetylates α-tubulin in vivo and is capable of auto-acetylation. TcATAT is located in the cytoskeleton and flagella of epimastigotes and colocalizes with acetylated α-tubulin in these structures. We have expressed TcATAT with an HA tag using the inducible vector pTcINDEX-GW in T. cruzi. Over-expression of TcATAT causes increased levels of the alpha tubulin acetylated species, induces morphological and ultrastructural defects, especially in the mitochondrion, and causes a halt in the cell cycle progression of epimastigotes, which is related to an impairment of the kinetoplast division. Finally, as a result of TcATAT over-expression we observed that parasites became more resistant to microtubule depolymerizing drugs. These results support the idea that α-tubulin acetylation levels are finely regulated for the normal progression of T. cruzi cell cycle.


Assuntos
Trypanosoma cruzi , Tubulina (Proteína) , Acetilação , Animais , Divisão Celular , Microtúbulos/metabolismo , Processamento de Proteína Pós-Traducional , Trypanosoma cruzi/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
4.
G3 (Bethesda) ; 11(1)2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33561222

RESUMO

Angomonas deanei is an endosymbiont-bearing trypanosomatid with several highly fragmented genome assemblies and unknown chromosome number. We present an assembly of the A. deanei nuclear genome based on Oxford Nanopore sequence that resolves into 29 complete or close-to-complete chromosomes. The assembly has several previously unknown special features; it has a supernumerary chromosome, a chromosome with a 340-kb inversion, and there is a translocation between two chromosomes. We also present an updated annotation of the chromosomal genome with 10,365 protein-coding genes, 59 transfer RNAs, 26 ribosomal RNAs, and 62 noncoding RNAs.


Assuntos
Simbiose , Trypanosomatina , Bactérias/genética , Cromossomos , Genoma , Trypanosomatina/genética
5.
Pathogens ; 11(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35055989

RESUMO

The symbiosis in trypanosomatids is a mutualistic relationship characterized by extensive metabolic exchanges between the bacterium and the protozoan. The symbiotic bacterium can complete host essential metabolic pathways, such as those for heme, amino acid, and vitamin production. Experimental assays indicate that the symbiont acquires phospholipids from the host trypanosomatid, especially phosphatidylcholine, which is often present in bacteria that have a close association with eukaryotic cells. In this work, an in-silico study was performed to find genes involved in the glycerophospholipid (GPL) production of Symbiont Harboring Trypanosomatids (SHTs) and their respective bacteria, also extending the search for trypanosomatids that naturally do not have symbionts. Results showed that most genes for GPL synthesis are only present in the SHT. The bacterium has an exclusive sequence related to phosphatidylglycerol production and contains genes for phosphatidic acid production, which may enhance SHT phosphatidic acid production. Phylogenetic data did not indicate gene transfers from the bacterium to the SHT nucleus, proposing that enzymes participating in GPL route have eukaryotic characteristics. Taken together, our data indicate that, differently from other metabolic pathways described so far, the symbiont contributes little to the production of GPLs and acquires most of these molecules from the SHT.

6.
Methods Mol Biol ; 2116: 425-447, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32221935

RESUMO

In this chapter we describe different electron microscopy techniques such as freeze fracture, deep etching, and three-dimensional reconstruction, obtained by electron tomography or focused ion beam scanning electron microscopy (FIB-SEM), combined with quick-freezing methods in order to reveal aspects of the cell structure in trypanosomatids. For this purpose, we chose protists that evolve in a mutualistic way with a symbiotic bacterium. Such cells represent excellent models to study the positioning and distribution of organelles, since the symbiotic bacterium interacts with different organelles of the host trypanosomatid. We demonstrate that the employment of such techniques can show the proximity and even the interaction of the symbiotic bacterium with different structures of the protist host, such as the nucleus and the glycosomes. In addition, the quick-freezing approach can reveal new aspects of the gram-negative bacterial envelope, such as the presence of a greatly reduced cell wall between the two membrane units.


Assuntos
Bactérias/citologia , Microscopia Eletrônica de Varredura/métodos , Trypanosomatina/microbiologia , Núcleo Celular/microbiologia , Parede Celular , Microcorpos/microbiologia , Microscopia Eletrônica de Varredura/instrumentação , Simbiose , Trypanosomatina/citologia
7.
Artigo em Inglês | MEDLINE | ID: mdl-32083023

RESUMO

Glycosomes are peroxisome-related organelles that have been identified in kinetoplastids and diplonemids. The hallmark of glycosomes is their harboring of the majority of the glycolytic enzymes. Our biochemical studies and proteome analysis of Trypanosoma cruzi glycosomes have located, in addition to enzymes of the glycolytic pathway, enzymes of several other metabolic processes in the organelles. These analyses revealed many aspects in common with glycosomes from other trypanosomatids as well as features that seem specific for T. cruzi. Their enzyme content indicates that T. cruzi glycosomes are multifunctional organelles, involved in both several catabolic processes such as glycolysis and anabolic ones. Specifically discussed in this minireview are the cross-talk between glycosomal metabolism and metabolic processes occurring in other cell compartments, and the importance of metabolite translocation systems in the glycosomal membrane to enable the coordination between the spatially separated processes. Possible mechanisms for metabolite translocation across the membrane are suggested by proteins identified in the organelle's membrane-homologs of the ABC and MCF transporter families-and the presence of channels as inferred previously from the detection of channel-forming proteins in glycosomal membrane preparations from the related parasite T. brucei. Together, these data provide insight in the way in which different parts of T. cruzi metabolism, although uniquely distributed over different compartments, are integrated and regulated. Moreover, this information reveals opportunities for the development of drugs against Chagas disease caused by these parasites and for which currently no adequate treatment is available.


Assuntos
Doença de Chagas , Trypanosoma brucei brucei , Trypanosoma cruzi , Doença de Chagas/metabolismo , Glicólise , Humanos , Microcorpos , Organelas
8.
Protist ; 170(6): 125698, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31760169

RESUMO

Strigomonas culicis is a kinetoplastid parasite of insects that maintains a mutualistic association with an intracellular symbiotic bacterium, which is highly integrated into the protist metabolism: it furnishes essential compounds and divides in synchrony with the eukaryotic nucleus. The protist, conversely, can be cured of the endosymbiont, producing an aposymbiotic cell line, which presents a diminished ability to colonize the insect host. This obligatory association can represent an intermediate step of the evolution towards the formation of an organelle, therefore representing an interesting model to understand the symbiogenesis theory. Here, we used shotgun proteomics to compare the S. culicis endosymbiont-containing and aposymbiotic strains, revealing a total of 11,305 peptides, and up to 2,213 proteins (2,029 and 1,452 for wild type and aposymbiotic, respectively). Gene ontology associated to comparative analysis between both strains revealed that the biological processes most affected by the elimination of the symbiont were the amino acid synthesis, as well as protein synthesis and folding. This large-scale comparison of the protein expression in S. culicis marks a step forward in the comprehension of the role of endosymbiotic bacteria in monoxenous trypanosomatid biology, particularly because trypanosomatids expression is mostly post-transcriptionally regulated.


Assuntos
Fenômenos Fisiológicos Bacterianos , Proteoma/genética , Simbiose/fisiologia , Trypanosomatina/microbiologia , Trypanosomatina/genética
9.
Sci Rep ; 9(1): 192, 2019 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-30655631

RESUMO

Kinetoplastid parasites, included Trypanosoma cruzi, the causal agent of Chagas disease, present a unique genome organization and gene expression. Although they control gene expression mainly post-transcriptionally, chromatin accessibility plays a fundamental role in transcription initiation control. We have previously shown that High Mobility Group B protein from Trypanosoma cruzi (TcHMGB) can bind DNA in vitro. Here, we show that TcHMGB also acts as an architectural protein in vivo, since the overexpression of this protein induces changes in the nuclear structure, mainly the reduction of the nucleolus and a decrease in the heterochromatin:euchromatin ratio. Epimastigote replication rate was markedly reduced presumably due to a delayed cell cycle progression with accumulation of parasites in G2/M phase and impaired cytokinesis. Some functions involved in pathogenesis were also altered in TcHMGB-overexpressing parasites, like the decreased efficiency of trypomastigotes to infect cells in vitro, the reduction of intracellular amastigotes replication and the number of released trypomastigotes. Taken together, our results suggest that the TcHMGB protein is a pleiotropic player that controls cell phenotype and it is involved in key cellular processes.


Assuntos
Estruturas do Núcleo Celular/ultraestrutura , Proteínas HMGB/metabolismo , Trypanosoma cruzi , Pontos de Checagem do Ciclo Celular , Nucléolo Celular , Citocinese , Proteínas HMGB/farmacologia , Proteínas de Protozoários/metabolismo , Trypanosoma cruzi/metabolismo , Trypanosoma cruzi/patogenicidade , Trypanosoma cruzi/ultraestrutura , Virulência
10.
Parasitology ; 146(4): 543-552, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30421693

RESUMO

Trypanosoma cruzi, the causative agent of Chagas disease, is a public health concern in Latin America. Epigenetic events, such as histone acetylation, affect DNA topology, replication and gene expression. Histone deacetylases (HDACs) are involved in chromatin compaction and post-translational modifications of cytoplasmic proteins, such as tubulin. HDAC inhibitors, like trichostatin A (TSA), inhibit tumour cell proliferation and promotes ultrastructural modifications. In the present study, TSA effects on cell proliferation, viability, cell cycle and ultrastructure were evaluated, as well as on histone acetylation and tubulin expression of the T. cruzi epimastigote form. Protozoa proliferation and viability were reduced after treatment with TSA. Quantitative proteomic analyses revealed an increase in histone acetylation after 72 h of TSA treatment. Surprisingly, results obtained by different microscopy methodologies indicate that TSA does not affect chromatin compaction, but alters microtubule cytoskeleton dynamics and impair kDNA segregation, generating polynucleated cells with atypical morphology. Confocal fluorescence microscopy and flow cytometry assays indicated that treated cell microtubules were more intensely acetylated. Increases in tubulin acetylation may be directly related to the higher number of parasites in the G2/M phase after TSA treatment. Taken together, these results suggest that deacetylase inhibitors represent excellent tools for understanding trypanosomatid cell biology.


Assuntos
Divisão Celular/fisiologia , Citoesqueleto/fisiologia , Inibidores de Histona Desacetilases/farmacologia , Histonas/química , Ácidos Hidroxâmicos/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Tubulina (Proteína)/química , Acetilação , Microtúbulos/fisiologia
11.
Parasitology, v. 146, n. 4, p. 543-552, abr. 2019
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2708

RESUMO

Trypanosoma cruzi, the causative agent of Chagas disease, is a public health concern in Latin America. Epigenetic events, such as histone acetylation, affect DNA topology, replication and gene expression. Histone deacetylases (HDACs) are involved in chromatin compaction and post-translational modifications of cytoplasmic proteins, such as tubulin. HDAC inhibitors, like trichostatin A (TSA), inhibit tumour cell proliferation and promotes ultrastructural modifications. In the present study, TSA effects on cell proliferation, viability, cell cycle and ultrastructure were evaluated, as well as on histone acetylation and tubulin expression of the T. cruzi epimastigote form. Protozoa proliferation and viability were reduced after treatment with TSA. Quantitative proteomic analyses revealed an increase in histone acetylation after 72 h of TSA treatment. Surprisingly, results obtained by different microscopy methodologies indicate that TSA does not affect chromatin compaction, but alters microtubule cytoskeleton dynamics and impair kDNA segregation, generating polynucleated cells with atypical morphology. Confocal fluorescence microscopy and flow cytometry assays indicated that treated cell microtubules were more intensely acetylated. Increases in tubulin acetylation may be directly related to the higher number of parasites in the G2/M phase after TSA treatment. Taken together, these results suggest that deacetylase inhibitors represent excellent tools for understanding trypanosomatid cell biology.

12.
Sci Rep, v. 9, 192, jan. 2019
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2693

RESUMO

Kinetoplastid parasites, included Trypanosoma cruzi, the causal agent of Chagas disease, present a unique genome organization and gene expression. Although they control gene expression mainly post-transcriptionally, chromatin accessibility plays a fundamental role in transcription initiation control. We have previously shown that High Mobility Group B protein from Trypanosoma cruzi (TcHMGB) can bind DNA in vitro. Here, we show that TcHMGB also acts as an architectural protein in vivo, since the overexpression of this protein induces changes in the nuclear structure, mainly the reduction of the nucleolus and a decrease in the heterochromatin:euchromatin ratio. Epimastigote replication rate was markedly reduced presumably due to a delayed cell cycle progression with accumulation of parasites in G2/M phase and impaired cytokinesis. Some functions involved in pathogenesis were also altered in TcHMGB-overexpressing parasites, like the decreased efficiency of trypomastigotes to infect cells in vitro, the reduction of intracellular amastigotes replication and the number of released trypomastigotes. Taken together, our results suggest that the TcHMGB protein is a pleiotropic player that controls cell phenotype and it is involved in key cellular processes.

13.
Parasitology ; v. 146(n. 4): p. 543-552, 2019.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15909

RESUMO

Trypanosoma cruzi, the causative agent of Chagas disease, is a public health concern in Latin America. Epigenetic events, such as histone acetylation, affect DNA topology, replication and gene expression. Histone deacetylases (HDACs) are involved in chromatin compaction and post-translational modifications of cytoplasmic proteins, such as tubulin. HDAC inhibitors, like trichostatin A (TSA), inhibit tumour cell proliferation and promotes ultrastructural modifications. In the present study, TSA effects on cell proliferation, viability, cell cycle and ultrastructure were evaluated, as well as on histone acetylation and tubulin expression of the T. cruzi epimastigote form. Protozoa proliferation and viability were reduced after treatment with TSA. Quantitative proteomic analyses revealed an increase in histone acetylation after 72 h of TSA treatment. Surprisingly, results obtained by different microscopy methodologies indicate that TSA does not affect chromatin compaction, but alters microtubule cytoskeleton dynamics and impair kDNA segregation, generating polynucleated cells with atypical morphology. Confocal fluorescence microscopy and flow cytometry assays indicated that treated cell microtubules were more intensely acetylated. Increases in tubulin acetylation may be directly related to the higher number of parasites in the G2/M phase after TSA treatment. Taken together, these results suggest that deacetylase inhibitors represent excellent tools for understanding trypanosomatid cell biology.

14.
Sci Rep ; 9: 192, 2019.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15878

RESUMO

Kinetoplastid parasites, included Trypanosoma cruzi, the causal agent of Chagas disease, present a unique genome organization and gene expression. Although they control gene expression mainly post-transcriptionally, chromatin accessibility plays a fundamental role in transcription initiation control. We have previously shown that High Mobility Group B protein from Trypanosoma cruzi (TcHMGB) can bind DNA in vitro. Here, we show that TcHMGB also acts as an architectural protein in vivo, since the overexpression of this protein induces changes in the nuclear structure, mainly the reduction of the nucleolus and a decrease in the heterochromatin:euchromatin ratio. Epimastigote replication rate was markedly reduced presumably due to a delayed cell cycle progression with accumulation of parasites in G2/M phase and impaired cytokinesis. Some functions involved in pathogenesis were also altered in TcHMGB-overexpressing parasites, like the decreased efficiency of trypomastigotes to infect cells in vitro, the reduction of intracellular amastigotes replication and the number of released trypomastigotes. Taken together, our results suggest that the TcHMGB protein is a pleiotropic player that controls cell phenotype and it is involved in key cellular processes.

15.
Parasitology ; 145(10): 1304-1310, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29806577

RESUMO

The anti-leishmania effects of HIV peptidase inhibitors (PIs) have been widely reported; however, the biochemical target and mode of action are still a matter of controversy in Leishmania parasites. Considering the possibility that HIV-PIs induce lipid accumulation in Leishmania amazonensis, we analysed the effects of lopinavir on the lipid metabolism of L. amazonensis promastigotes. To this end, parasites were treated with lopinavir at different concentrations and analysed by fluorescence microscopy and spectrofluorimetry, using a fluorescent lipophilic marker. Then, the cellular ultrastructure of treated and control parasites was analysed by transmission electron microscopy (TEM), and the lipid composition was investigated by thin-layer chromatography (TLC). Finally, the sterol content was assayed by gas chromatography-mass spectrometry (GC/MS). TEM analysis revealed an increased number of lipid inclusions in lopinavir-treated cells, which was accompanied by an increase in the lipophilic content, in a dose-dependent manner. TLC and GC-MS analysis revealed a marked increase of cholesterol-esters and cholesterol. In conclusion, lopinavir-induced lipid accumulation and affected lipid composition in L. amazonensis in a concentration-response manner. These data contribute to a better understanding of the possible mechanisms of action of this HIV-PI in L. amazonensis promastigotes. The concerted action of lopinavir on this and other cellular processes, such as the direct inhibition of an aspartyl peptidase, may be responsible for the arrested development of the parasite.


Assuntos
Inibidores da Protease de HIV/farmacologia , Leishmania mexicana/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos/análise , Lopinavir/farmacologia , Colesterol/análise , Cromatografia em Camada Delgada , Cromatografia Gasosa-Espectrometria de Massas , Leishmania mexicana/ultraestrutura , Microscopia Eletrônica de Transmissão , Esteróis/análise
16.
Parasit Vectors ; 11(1): 83, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29409544

RESUMO

BACKGROUND: Trypanosoma cruzi uses several strategies to survive in different hosts. A key step in the life-cycle of this parasite is metacyclogenesis, which involves various morphological, biochemical, and genetic changes that induce the differentiation of non-pathogenic epimastigotes into pathogenic metacyclic trypomastigotes. During metacyclogenesis, T. cruzi displays distinct morphologies and ultrastructural features, which have not been fully characterized. RESULTS: We performed a temporal description of metacyclogenesis using different microscopy techniques that resulted in the identification of three intermediate forms of T. cruzi: intermediates I, II and III. Such classification was based on morphological and ultrastructural aspects as the location of the kinetoplast in relation to the nucleus, kinetoplast shape and kDNA topology. Furthermore, we suggested that metacyclic trypomastigotes derived from intermediate forms that had already detached from the substrate. We also found that changes in the kinetoplast morphology and kDNA arrangement occurred only after the repositioning of this structure toward the posterior region of the cell body. These changes occurred during the later stages of differentiation. In contrast, changes in the nucleus shape began as soon as metacyclogenesis was initiated, while changes in nuclear ultrastructure, such as the loss of the nucleolus, were only observed during later stages of differentiation. Finally, we found that kDNA networks of distinct T. cruzi forms present different patterns of DNA topology. CONCLUSIONS: Our study of T. cruzi metacyclogenesis revealed important aspects of the morphology and ultrastructure of this intriguing cell differentiation process. This research expands our understanding of this parasite's fascinating life-cycle. It also highlights the study of T. cruzi as an important and exciting model system for investigating diverse aspects of cellular, molecular, and evolutionary biology.


Assuntos
Diferenciação Celular , Organelas/ultraestrutura , Trypanosoma cruzi/citologia , Trypanosoma cruzi/fisiologia , Microscopia
17.
PLoS One ; 12(11): e0187516, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29131838

RESUMO

In trypanosomatids, the kinetoplast is the portion of the single mitochondrion that is connected to the basal body and contains the kDNA, a network composed by circular and interlocked DNA. The kDNA packing is conducted by Kinetoplast Associated Proteins (KAPs), which are similar to eukaryotic histone H1. In symbiont-harboring trypanosomatids (SHTs) such as Angomonas deanei and Strigomonas culicis, a ß-proteobacterium co-evolves with the host in a mutualistic relationship. The prokaryote confers nutritional benefits to the host and affects its cell structure. Atomic force microscopy showed that the topology of isolated kDNA networks is quite similar in the two SHT species. Ultrastructural analysis using high-resolution microscopy techniques revealed that the DNA fibrils are more compact in the kinetoplast region that faces the basal body and that the presence of the symbiotic bacterium does not interfere with kDNA topology. However, RT-PCR data revealed differences in the expression of KAPs in wild-type protozoa as compared to aposymbiotic cells. Immunolocalization showed that different KAPs present distinct distributions that are coincident in symbiont-bearing and in symbiont-free cells. Although KAP4 and KAP7 are shared by all trypanosomatid species, the expanded repertoire of KAPs in SHTs can be used as phylogenetic markers to distinguish different genera.


Assuntos
DNA Mitocondrial/genética , DNA de Protozoário/metabolismo , Trypanosoma/genética , Animais , Microscopia de Força Atômica , Mitocôndrias/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Simbiose
18.
Protist ; 168(2): 253-269, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28371652

RESUMO

The mutualistic relationship between trypanosomatids and their respective endosymbiotic bacteria represents an excellent model for studying metabolic co-evolution since the symbiont completes essential biosynthetic routes of the host cell. In this work, we investigated the influence of the endosymbiont on the energy metabolism of Strigomonas culicis by comparing the wild strain with aposymbiotic protists. The bacterium maintains a frequent and close association with glycosomes, which are distributed around the prokaryote. Furthermore, 3D reconstructions revealed that the shape and distribution of glycosomes are different in symbiont-bearing protists compared to symbiont-free cells. Results of bioenergetic assays showed that the presence of the symbiont enhances the O2 consumption of the host cell. When the quantity of intracellular or released glycerol was evaluated, the aposymbiotic strain presented higher values when compared to symbiont-containing cells. Furthermore, inhibition of oxidative phosphorylation by potassium cyanide increased the rate of glycerol release and slightly diminished the ATP content in cells without the symbiont, indicating that the host trypanosomatid enhances its fermentative activity when the bacterium is lost.


Assuntos
Fenômenos Fisiológicos Bacterianos , Simbiose , Trypanosomatina/microbiologia , Metabolismo Energético
19.
Acta Trop ; 170: 149-160, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28185826

RESUMO

The Trypanosomatidae family includes pathogenic species of medical and veterinary interest. Chagas disease is endemic in Latin America, and about 8 million people are infected worldwide. There is a need for more effective drugs for the acute, undetermined and chronic phases of the disease that, in addition, do not cause side effects, stimulating the search for identification of new drug targets, as well as new chemotherapeutic targets. Trypanosomatids contain characteristic structures, such as the nucleus that undergoes a closed mitosis without chromosome formation and variations of chromatin packing in the different protozoa developmental stages. The nuclear DNA is condensed by histones that suffer post-translational modifications, such as addition of methyl groups by histone methyltransferases (MHT) and addition of acetyl groups by acetyltransferases. These processes modulate gene expression and chromatin organization, which are crucial to transcription, replication, repair and recombination. In the present study, the effects of chaetocin, a HMT inhibitor, on T. cruzi epimastigote proliferation, viability, ultrastructure and cell cycle were investigated. Results indicate that chaetocin promoted irreversible inhibition of protozoa growth, evident unpacking of nuclear heterochromatin and intense nucleolus fragmentation, which is associated with parasite cell cycle arrest and RNA transcription blockage. Taken together, data obtained with chaetocin treatment stimulate the use of histone methyltransferase inhibitors against pathogenic trypanosomatids.


Assuntos
Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Trypanosoma cruzi/efeitos dos fármacos , Animais , Ciclo Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Histona Metiltransferases , Humanos , Piperazinas/farmacologia
20.
J Eukaryot Microbiol ; 63(6): 794-803, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27194398

RESUMO

In the last two decades, RNA interference pathways have been employed as a useful tool for reverse genetics in trypanosomatids. Angomonas deanei is a nonpathogenic trypanosomatid that maintains an obligatory endosymbiosis with a bacterium related to the Alcaligenaceae family. Studies of this symbiosis can help us to understand the origin of eukaryotic organelles. The recent elucidation of both the A. deanei and the bacterium symbiont genomes revealed that the host protozoan codes for the enzymes necessary for RNAi activity in trypanosomatids. Here, we tested the functionality of the RNAi machinery by transfecting cells with dsRNA to a reporter gene (green fluorescent protein), which had been previously expressed in the parasite and to α-tubulin, an endogenous gene. In both cases, protein expression was reduced by the presence of specific dsRNA, inducing, respectively, a decreased GFP fluorescence and the formation of enlarged cells with modified arrangement of subpellicular microtubules. Furthermore, symbiont division was impaired. These results indicate that the RNAi system is active in A. deanei and can be used to further explore gene function in symbiont-containing trypanosomatids and to clarify important aspects of symbiosis and cell evolution.


Assuntos
Bactérias/citologia , Proteínas de Protozoários/genética , Simbiose , Trypanosomatina/microbiologia , Bactérias/genética , Divisão Celular , Proteínas de Protozoários/metabolismo , Interferência de RNA , Trypanosomatina/genética , Trypanosomatina/metabolismo , Trypanosomatina/ultraestrutura , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...